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Development of an experimental s-CO, loop for
bottoming cycle applications

Introduction

* Review of the project
 Aim and objectives
 S-CO, waste heat recovery system

Rig test development

» Expected outcomes of this research
* Risks identified

* Proposed configurations

* Rig test definition & design vector

Summary of progress

Next steps
« Roadmap



Design, build and commission a closed loop s-CO, system to
enable critical component testing and whole cycle
demonstration of a representative waste heat recovery system

Objectives

Develop tools for the design of s-CO, power cycles for waste heat recovery
De-risk a proof-of-the-concept

|dentify critical components and key requirements for rig testing

Design & commission a s-CO, closed loop test facility
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‘ University

e Component validation (TRL 4)
— Waste heat recovery system (main heat exchanger)
— Supervision and control system
— Compressor characterisation
» Feasibility evaluation of the concept (TRL 3)
e Development of analytical models to predict (TRL 3)
— Part load performance
— Transient response
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This interface allows:

* Independent testing of each major
equipment
* Progressive investment on
sophisticated measurement
techniques
 Lessons learned from Stage 1+ -
Stage 2
» De-risk future component testing
» Identify technology limitations
« Stand-alone development of sub-
systems:
e Cooling tower
» Electric supply
« Combustor
* Gearbox train and lube
e Scavenging system
» Split control system development
» Define third party support
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s-CO, Rig test: Proposed design vector

Parameter Stages: 1la & 1b Stage 2
Overall Pressure Ratio 2.66 195
Top pressure [MPa] 12 15
Top temperature [K] 450 £ 8 820
Bottom pressure [MPa] 4.5 7.7
Bottom temperature [K] > 284 NA
Inlet compressor [K] 294 305
CO, cycle mass flow [kg/s] 1 -
CO, to MHEX [kg/s] 0.3

Ambient Temperature: 288 [K]

Air mass flow < 2 [kg/s]

Water mass flow < 16 [kg/s]

Polytropic efficiency: 70%

Max temperature for returning cooling tower 310 [K]
Max temperature before expansion 370 [K]

Pinch point heat exchangers: 5 [K]
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Modelling of cycles at design point well
developed

— Analytical tools have been tuned
and validated

Development of transient models of rig
test stage la well advanced

Rig test baseline layout in final stages

Tuning of tools for centrifugal
compressor design in progress

— First prototype of centrifugal
compressor completed

Rig component costing exercise
complete for key components
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Preliminary compressor (stage 2) mechanical
design study completed

Test of medium scale main heat exchanger
completed

Le Pierres, R. et. al. “Impact of mechanical design issues on
PCHE", 2011
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Initial cycle modelling .
Cycle design Transient cycle Rig component Rig assembled
modelling design
Detailed cycle modelling & Rig comp_onent
concept design delivered
v v v v

2015 2016 2017

Rig baseline layout Rig design complete Start rig testing
definition

v
Lessons learned
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Stage Components Outcomes
- De-risk SCO, loo
ssor, at
la

1b

on valve, pre cooler

MHEX, combustor, pre and
post cooler, circulation
compressor, expansion valve

Stage 1 + centrifugal

Stage 1 + centrifugal
compressor, turbine -
uncoupled

Stage 1 + centrifugal
compressor, turbine - coupled

- Test MHEX performance.
- Demonstrate pressure and temperature control cooling system.

- De-risk compressor installation.
- Demonstrate pressure and temperature control at supercritical state.

- Demonstrate representative uncoupled rig control.

- De-risk turbine installation.
- Demonstrate uncoupled design point performance and control.
- Demonstrate part load/transient

- Demonstrate coupled design point performance and control.
- Demonstrate start-up & shut-down process of representative cycle.
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Current learning milestone: Simple Recuperated
Brayton Cycle

Could offer 1/3 of
additional power to the
topping cycle
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~ 5 years experience o More than 10 years experience
Small scale system and Integrated system test Large component development and
component test system test
EPS 100 — Echogen Power
IST Bechtel Marine Propulsion Corporation Systems & Dresser Rand

SNL Compressor Loop Test (USA) — 2007 & Bettis Atomic Power Laboratory — 2007
Nuclear Power Institute of China
(NPIC) — 2011
Others
Indian Institute of Science (India) —
2012
Research Centre Rez (Czech
Republic) — 2013

Tokyo Institute of Technology (Japan) — Sunshot — Southwest Research Institute

2012 | General Electric / Thar Energy
Topics Others
e  Fluid behaviour SCIEL Korea Atomic Energy Research Topics
« Safety implications Institute (Korea) — 2012 « Commercial development
¢ Analysis codes ) ¢ Chemistry control
« Material behaviour Topics SNL & Barber Nichols — Brayton «  Operational control
*  Specifications «  Turbomachinery performance Recompressed (USA) - 2007

* Bearing & seals
* Heat Exchanger performance . .
«  Operational test Topics Source: SCO2 Power Cycle Symposium
¢ Test loop control
17 Validation design tools
¢ Plant concept development



