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<= @DF PosITION

= The sCO, cycle is an opportunity to:
o Improve power plant efficiency
o Reduce the fossil plant impact
o Enhance renewable heat sources

= Main goals about sCO, cycles are to:

o Scale-up the sCO, Brayton cycle maturity level
flexible o Prove the sustainability of this technology
o Optimize processes at any load

EU project constitution,
Cycle flexibility assessment

Review of nuclear

Preliminary studies,
power cycles for GenlV y

performances assessment with sCO2 performance assessment
CCS, start of internal CO,, project for coal-fired power plants
@ [Le Moullec ; 2012] @ [Mecheri, Le Moullec ; 2016]
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CONTEXT & OBJECTIVES

sCO, Brayton cycle

Renewable

energies

Is the sCO,, Brayton cycle flexible?
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COAL POWER PLANT FLEXIBILITY?

= Several ways (non-exhaustive list):
o Full-load power plant + storage (electro-chemical, hydraulic, energy carriers (H.)...)
o Electricity load management (personal consumption, companies...)
o Smart grids

o Running at part-load ]

v Compressor Recuperator

» Part-load = modifies the -
boiler heat duty: Boiler

o CO, mass flow = constant
- Variation of the Turbine A
Inlet Temperature (TIT) Y A Y

o TIT = constant = variation
of the CO, mass flow

Heat sink Turbine TIT
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CO, MASS FLOW VARIATION LEADS TO...

Pressure balance in the cycle.
Variation of compressors:

_ For each value of the CO, mass
* Pressure ratio (CPR) Variation of heat flow
* Isentropic efficiency (CIE) exchangers — - P iy
performances
Compressor Recuperator
Pressure
- decreasg in Required
the turbine oressure
Boiler WER) increase =»
| ™~ compressor
pressure
Y A Y Variation ratio (CPR)
of the \/
boiler P
. ressure
efficiency d
rops
Heat sink / turbine\ -~ mmmeTEesss
Variation of Variation of turbines:
cycle pressure « Expansion ratio (TER)
drops - Isentropic efficiency (TIE)
[ J
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TURBINE OFF-DESIGN BEHAVIOR

» The Turbine Expansion Ratio (TER) is expected to follow the Stodola Ellipse Law [Cooke 1983]:

3,7
TER
3,2
2,7
2,2
1,7

1,2

Turbine Expansion Ratio

0,7
40% 60% 80% 100% 120%

Relative mass flow

» The Turbine Isentropic Efficiency (TIE) is expected to follow the Knopf law [Knopf 2012]:

95% Y
90% AT A
85% .

80% .

75% A

Turbine Isentropic efficiency
D.

70%
40% 60% 80% 100% 120%
Relative mass flow
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Pressure ratio

PRESSURE IN THE CYCLE

A —O— TER+A4P

_design ™\
conditions

Compressor operational curve

Relative mass flow

. J
& =
> < eDF

1l
Inlet volume flow capacity

« Throttle
« IGV
* Recycling
» Variable shaft-speed
1.3
1,24
1,14
surg?/_/
1,0+ 1=
0,9
= 0,81
= 0,7
0:4_ 60° °
0.5 80°

...... Compressor rated point
105% = 100 x 1.05

“— == == Normal operating condition
98% (assumed)

T specified
operating
condition

Example of Compressor with IGV
[Liebenthal et al. 2011]

Example of Compressor with
variable shaft speed
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COMPRESSOR OFF-DESIGN BEHAVIOR

(IGV compressor map)

= Assumptions

o Pressure ratio: ellipse laws:
Pressure Ratio = Ay * /By * (1 — C; * (mass flow)?) + D, + E,
o Efficiency lines: polynomial laws

Isentropic Ef ficiency = A, * (mass flow)? + B, = (mass flow)? + C, x (mass flow) + D,

& =
2~ EDF

3,7

Pressure ratio
N n w
[p%] =~ M

—
=l

1,2

0,7
20%

efficiency
lines

40%

60%

90%
85%
" 80%
75%
operational curves * 70%
for different angles
65%
60%
NS 0
o\ 55%
o
50%
80% 100% 120% 140%

Relative mass flow

Isentropic efficiency
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METHODOLOGY

Reference case
(full load)

Part-load performances
calculation

(Indicators:

Assumptions electrical power production,
&
net cycle efficiency)
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B Ea Contents lists available at ScienceDirect
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& Energy
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-

ELSEVIER journal homepage: www.elsevier.com/locate/energy

Supercritical CO; Brayton cycles for coal-fired power plants @Cmssmk

Mounir Mecheri ?, Yann Le Moullec >~

Pinch
10 K
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(full load)

©

| F/action 0)\CO 2 flow
Main i / 11 \

compressor |
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3

&
Flue gases __,

»

W
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Heat sink compresggr

Pressure drops : TIE
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METHODOLOGY

« Steady-state calculations - no transient

Load
A

100% A

80% 1

Assumptions

not considered

« Boiler efficiency variations - not considered
* Pressure drop variations - not considered
« Turbomachines pressure variations = elliptic laws

« Turbomachines efficiency variations = polynomial laws
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METHODOLOGY

= Scenario 1 (simplified case):
o CPR - ANL law (Chang et al. 2006)

o TER =CPR

=» The CO, mass flow varies from 60% to 110% of nominal
value

Compressor #1 Performance Map | Argonne N. L. [Chang et al. 2006]
(Centrifugal vs. Axial)

3.7 100

3.4 90

3.1 ™~ 80

2.8 I, 70
- R \ R
S 25 ~J 60 -
o ‘}\ \ e
g 2.2 — pr (axial) N 0 3
8 1.9 40 &
g " — pr (centr) \ £
- 16 —_eff (axial) AN 30

\
1.3 I, 20
— eff (centr)
1 10
N

0.7 \“ 0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Fixed inlet conditions,
design Speed Relatl\fe FlOW Rate

[ J
:QEDF M. Mecheri | 1st European Seminar on Supercritical CO2 Power Systems — Vienna - Austria | 2016 September 30 | 15



METHODOLOGY

= Scenario 2 (throttle valve):

o TER - Stodola ellipse law Need to throttle the

| compressor outlet
pressure to fit the

o CPR = ANL law (Chang et al. 2006) [ rp oo irements

—

=» The CO, mass flow varies from 60% to 100% of nominal
value

A —O— TER+AP
- - - Compressor operational curve

Pressure ratio

Relative mass flow
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METHODOLOGY

= Scenario 3 (IGV compressors):
o TER - Stodola ellipse
o CPR - created IGV compressor map
o =» the CO, mass flow varies from 60% to 110% of
nominal value
3.7 90%
9ﬁ|0|ency ’ 85%
32 lines .
............  80%
2,7 o
o 75% &
o =
.S : =
22 e\\(\ operational curves * 70% o
% 5\)‘(3 for different angles 2
& 65% £
1,7 2
60%
12 wne 55%
\ o
cnoke
0,7 50%
20% 40% 60% 80% 100% 120% 140%
Relative mass flow
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RESULTS
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SC 1:
CPR =one curve
TER = CPR

SC 2:

TER = Stodola

CPR =one curve

Pr. Control = throttle

SC3:
TER = Stodola
CPR = IGV

SC1 = non realistic
SC2 = high losses

SC3 =
o better than SC2

o and more realistic
than SC1
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CONCLUSION & DISCUSSIONS

» ot of assumptions - must be checked in a more detailed analysis

» Lack of information
o turbine off-design behavior
o compressor off-design maps
= Need for real turbomachinery test and model validations !

= Conclusions in these modeling conditions:
o Single operational curve compressor =» unsuitable to follow TER
o Throttling compressor control = very large losses
o = IGV compressors = proper operational pressure range + minimal losses at off-design

o Off-design performances [SC3 - IGV compressors] from 80% to 110% of nominal mass

flow:
* Power production: from ~50% to 120% of nominal value
* Cycle net efficiency: [40% - 46.8%)]
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PERSPECTIVES

= Concerning previous results:
o Consolidate the assumptions/hypothesis
o Improve the current models
o Compare the off-design performances

= Ongoing studies: general dynamic model
o Dymola modeling of the global power plant
o Including transient phenomenon
o Start and stop
o Instrumentation and control
o Power plant layout - accurate pressure drops model
o Turbomachine off-design methods - velocity triangle modification with mass flow
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